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Abstract-A bounda.ry layer method for accelerating the solution of the difrerential equations rep
resenting the dynamics of an analog relaxation neural net in a high gain limit is presented. The
inverse of the gain parameter in an analog neuron's transfer function is used as a small pararneter,
in terms of which the net dynamics may be separated into two time scales. This separation leads to
economies in the numerical treatment ofthe associated differential equations, i.e., the acceleration in
question. Illustrative computations are presented,

1. INTRODUCTION

Analog neural networks ean be designed very effectively by using optimization principles together
with a descent dynamics that can be realized as a circuit composed of analog neurons. This ap-
proach was suggested independently by Grossberg [1] and Hopfield [2], and the resulting neural
networks, analog relaxation neural networks (ARNN), are often referred to as Hopfield nets. Neu-
ral networks for a variety of computational tasks have been designed this way. Networks that
are derived directly by this method may be slow to converge to an optimal answer, for exam-
ple, because the condition number of the coefficient matrix of the associated circuit dynamics'
equations (a Jacobian in the nonlineax case) can be large. The sarne problem arises throughout
scientific computing and may often be addressed by acceleration methods.

Here, we develop a boundary layer method for accelerating the solution of the differential
equations representing the dynamics of an ARNN. We have previously adapted multigrid methods
to the acceleration of such neural networks' dynamics [3]. Boundary layer methods are used
in solving systems of differential equations and pa^rtial difierential equations because they are
powerful methods for stiff or singula,rly perturbed problems. They work by identifying some
small parameter in terms of which a separation of the problem into two distinct but coupled time
or space scales (a fine scale and a coarse scale) may be made. The fine scale dynamics is trivial
except in a small region of space-time called the boundary layer. Given such a small pa^rameter,
the separation of scales can often be achieved in a standard way, described in [4].

The differential equations representing an ARNN's dynamics, like any analog circuit dynamics,
have a special form which must be taken into account in order to develop an effective bounda,ry
layer method. Since these nets are generally run at high gain, we use the inverse of. the gain
pararneter in an analog neuron's transfer function as the small parameter that separates two
time scales. The boundary layer will consist of a subset of the cross product of the set of neurons
and the time anis: namely those time intervals, for each neuron, during which the neuron is in
the high-gain region of its transfer function. (For a small network, one could more simply say
that the boundary layer is the union, on the time axis, of all such intervals over all neurons,
but for a large network, this subset would not be small.) In Section 2, we explain the technique
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for separation into scales, including a description of the numerical treatment of the separated
problem. (The formalism of this scale sepa^ration is given in the Appendix.) In Section 3, a
computation illustrates the new technique.

2. APPLICATION OF THE BOUNDARY LAYER FORMALISM

The dynamics of an ARNN are specified by a system of the form

i t + u : F ( a ) ,  f ) 0 ,
u :  g (u ) ,

with z(0) being given. g is the sigmo,i,d, which we take in the form

g(z) :  g (z ,e ) :  
t lb ,

where the definition is componentwise when z and g are vectors. Here, e is a scale parameter.
The solution of this system is sought, so that the equilibrium value of u may be determined. The
numerical solution of the initial value problem (1) may be obtained by introducing a mesh of f
values {j Lt, i : 0,1,. ..} *d employing some numerical method. We seek to accelerate this
solution process when e is a small positive parameter. In this case, the boundary layer methods
of singular perturbation theory will come into play.

Setting h(z) : | (1 + siSz), we have

So when no component of u is small in magnitude compared to e, the solution u of (1) may be
approximated to good accuracy by the solution of

i t , * u = F ( h ( u ) ) , (2)

which is simpler (cheaper) to solve than (1). There are at least two reasons for this:
(i) Equation (1) is a stiff equation for small e, whereas (2) is not stiff. Thus, far fewer time

steps are needed for numerically solving (2) than (1).
(ii) The limiting form.F(h(u)) is usually simpler than g(z,e), so that less arithmetic is in-

volved in evaluating F compared to g. Equation (2) may be used until one or more
components of u becomes O(e).

Say all such components a,re less than ce in magnitude, c being some fixed positive constant.
We take this as an indication that these components are in process of changing sign, and we
call such a state of the solution a tmnsition (of sign). Call uz the block of components in
transition, and call ur the remaining block. Call the time at which this state commences t: L- .
Corresponding to the block decomposition of u, compose a block decomposition of F : (Fl , F2) T .
In applications,

F( t r )  :  l+Ta,  (3 )

where I is a fixed vector and ? a fixed matrix. Denote the corresponding block decomposition
ofl and ? by

Now let us introduce new variables by scaling, as follows:

(1)

g(z,e)  :  h(z)  + o ( ;  
- i "  lz i l le)  

.

(4),: (',:,) *o ,: (T:: I::)

(ur,ur)T :  (a,eg)T;
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A may be approximated within O(e) by a function z(r) 14, Chapter 51, r : (t - I-)/e is the
so.called fast ti,me, and. z(r) is a solution of the following initial value problem (cf. (A. ) in the
Appendix):

z , : B + r n # ,  r ) 0 ,

- . /^\  uz(L-)
z \ v ) _  

e  ,

B  : Iz+721h(ns(L- ) ) .

Here / denotes f . Wtrite this initiat value problem can be solved in closed form (see [5]), it is
cheaper to solve it numerically on a r mesh, rj: j Lr, j - 0, 1,.... We follow this numerical
solution until the transition is complete, say when all components of z exceed c in magnitude.
We suppose this occurs at the lVth mesh point, qy. Thus the transition occurs on the r interval

[0, r;y], or equivalently, on the f interval

11 :  lL - ,  L -  *  e  NAr ] .

With ar(I-) : u{L-) being prescribed, c(t) is approximated to within O(e) by the solution of
an initial value problem (cf. (A.2) (i)). In particular,

h  I  n :  \  *T11h(n)  +T129(e  z ) ,  t  e  I t .

Solving this equation on the f mesh

t t : L -  + i A t ,  i : 0 , . . . , r n ,

we see that the values of z needed for the solution process of (5) are at the following values of r:

N . ^
n i \ : ; i L r ,  i : 0 , " ' , r n ;

rn is the smallest integer exceeding eNAr/Lt. If rn divides N, these values of r lie on the r
mesh. If rn does not divide N, we must interpolate. The very simplest interpolation is to choose
the jth r needed as 

r i, l

" t i ) :  | "  j l ! r .
L m "  l

That is, we take the following approximations

z(r<i ) - ' ( lYr l  o")  - - ( l ia t l  ^- \'  \L?71- l  /  
'  (L# l  " ' , /  

'  i :o ' " ' ' f f i '

The transition completed, we return to (2) to continue the solution development.

Why the Boundary Layer Method, is Ad,uantageous

The transition stage is a boundary layer region for u. This region of rapid development requires
small mesh increments in the numerical development (the r mesh). The point is that the boundary
Iayer development identifies that part of the system (in particular, u2) which undergoes the rapid
variation in the boundary layer (namely z) and invests in a fine mesh (the r mesh) calculation
only on that part. In the example in Section 3, there are 60 coarse mesh points and a total of 300
evaluations at such points. There are 500 fine mesh points and 550 corresponding evaluations.
Without the boundary layer methodology, this number of evaluations would increase from 550 to
2500. Thus, the boundary layer methodology eliminates 1950 of 2800 evaluations, or 70%. This
fraction eliminated should grow with the order of the system. (Note that all figures given here
are approximate.)

(5)
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3. A NUMERICAL EXPERIMENT

In this section, we illustrate the methods proposed in Section 2 by means of a computation
performed on a special example.
Exltvtpl,s. We treat a fifth order system of the form (1), (3), (4), with

t -  - a n d  T - -

which is the standard /c winners ARNN [6]. we take u(0) : (0.9, 1.5, 1..1, 1,0.2b). other numeri-
cal values are c : 3, Af : 0.005, Ar : 0.025, e : 0.01. The results are illustrated in Figure L.
We see that there a^re 4 transitions. First the block of unknowns (21,u5) transits at t:0.13b
(approx.), then 23, u4, and u2, respectilely, transit separately at t:0.175, 0.195, 0.285 (ap
prox.), respectively. As is evident from the figure, the trajectories are smooth throughout. The
transition regions .[ are marked with blocks.
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Figure 1. The numerical experiment illustrating transitions.
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APPENDIX
After scaling, equation (1) ta^kes the form (we use the form (3) for F(u) with the block decomposition given

in (4)),
dt + u = lr * ?rr g@, e) * Ttz g(e g, e),

e it + y : lz * Tzr g(n, e) + Tzz g(e g, e),
We take t = 0 as the crossing point of the components g. That is, the value of t where the components in transition
vanish, i.e., gr(0) = 0. Now [4, Chapter 5] with r = t/e and., = #,

aQ) = so111* o(e),

AQ) : Ao(t) + Yo(") * o(e),

l.

2.

3.

4.

D .

6.

(A.1)
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where
(i) io * a,o: h *Tnh(co) + \z ufi,
(ii) o:Iz*Tzrh(',d+T* t;|j-.{e, (A.2)

(iii) (t o(o) + Yo)' =Iz +Tzrh(uoirJ)) +T,,+.- "  
1+  e- (go(o)+Yo) '

with c6(0) : o(0) and Uo(o) + Y(O) = O.
Combining (i) and (ii) in (A.2), we finc

io*oo: lr*?rrh(ao)-Tt T{r ' ( IzrTzth(co)).  (A. i )

Since oq doesn't change sign in the transition (in a neighborhood of zeno), the right member of (A.3) ia time-
independent in the transition. Denoting this right member by A, . constant, we have

, ao = (oo(0) - A)e-t + A.

We also have 
/ t \

, J : = - ! o s l - ! -  =  
'  I

Tlrr Qz+Tnh(ad) )'
Note that Uo ie also a constant in the transition, and so, go = Uo(O), say. Let

z(r) =Uo*YoGy
B =Iz+?zr h(oo(o)).

Then from (A.2) (iii),

z' : B +Tzz fi=' z(o) : o. (A.4)

lll- 6r3-G


